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Abstract 
Fourier transform spectroscopy has found application in 
many areas including chemometrics, biomedical and 
biochemical studies, and atmospheric chemistry. This 
paper describes an investigation into the application of 
the LLNL Hyperspectral Infrared Imaging Spectrometer 
(HIRIS) to the non-destructive evaluation of man-made 
and natural materials. We begin by describing the HIRIS 
system and the objects studied in the investigation. Next, 
we describe the technique used to collect the hyperspec- 
tral imagery, and discuss the processing required to 
transform the data into usable form. We then describe a 
technique to analyze the data, and provide some prelim- 
inary results. 

Introduction 

Fourier Transform Infrared Spectroscopy (FTIS) has 
proven to be a valuable analysis tool in such areas as 
chemomettics, biomedical and biochemical studies, and 
atmospheric chemistry [l-3]. One technique for per- 
forming FTIS is based on a Michelson interferometer 
[4]. Typically, a Michelson interferometer consists of 
two mirrors oriented along orthogonal axes. One of the 
mirrors is held in a fixed position, while the other mirror 
is allowed to translate along its axis. A beam splitter is 
placed between the mirrors such that light entering the 
interferometer is passed to each mirror. The light is 
reflected from the mirrors, combined by the beamsplit- 
ter, and focused onto a detector array. As the movable 
mirror in the interferometer translates, a time varying 
interference pattern is formed on the detector array. The 
time-series associated with each detector (pixel) in the 
array is called an interferogram. Fourier transformation 
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of the interferograrn reveals the spectral characteristics 
of the light input to the interferometer. 

F’I’IS provides a fast, high resolution approach to the 
spectral analysis of broadband infrared light. Indeed, 
many molecules can be identified by the wavelengths of 
infrared light that they absorb or emit. In the case of 
absorption FTIS, a broadband source of photons is 
applied to a collection of molecules. The identities of 
the constituent molecules are found by determining 
which wavelengths are absorbed. This approach is often 
used to study the atmosphere or gaseous plumes where 
the thermal background is used as a wideband source of 
photons. In contrast, emission spectroscopy identifies 
the constituent components of an object by the wave- 
lengths of photons emitted from a thermally excited 
object. Emission spectroscopy is employed when an 
object is (or can be) thermally excited. Emission FTIS is 
often used in material studies. 

The Hyperspectral Infrared Imaging Spectrometer 
(HIRIS), developed at LLNL, was used to collect data 
for this investigation. (See reference [5] for a discussion 
of the predecessor to HIRIS.) While it has primarily 
been used in remote sensing applications, the focus here 
is to assess its usefulness in non-destructive evaluation 
applications. In essence, the HIRIS consists of a 
BioRad 896 Michelson interferometer, a cryogenically 
cooled Silicon Arsenide (Si:AsBIB) focal plane array, 
and associated optics. For these experiments, the HIRIS 
was used with a collimator lens to the input of the inter- 
ferometer. The focal length of collimator lens was 
100 mm and the focal length of the condenser lens was 
226 mm thereby yielding a system magnification factor 
of 2.26. The focal plane array in the HIRIS is a 128x128 
pixel array with a pixel size of 75 pm per pixel. The 
resulting resolution of the reconfigured system in thus 
on the order of 33 pm per pixel. 

Two objects were used to assess the applicability of 
this technology to non-destructive evaluation: a block of 
ahrminum alloy A356 and a sample of granite rock. The 



A356 alloy consists primarily of aluminum (-92%), sili- 
con (-7%) and trace amounts of copper, magnesium, 
manganese, iron and zinc [61. This alloy has excellent 
corrosion resistance and casting properties, good 
machinability and weldability, and high strength. It is 
most often used in the automotive and aircraft industries 
where high strength and low corrosion are required. The 
block we analyzed was subject to compression-tension 
cycles until it fractured. Our interest in this sample is to 
study the fracture sites. Our second object of interest 
was a sample of granite rock. Granite is an igneous rock 
typically consisting of quartz, feldspar and some ferro- 
magnesian minerals such as mica, amphibole or py~ox- 
ene [7]. Chemically, granite is composed of -70% silica 
(SiOz), -15% Aluminum Oxide (Al203) and trace 
amounts of other oxides. Our interest here is to study the 
mineral and chemical content of the sample. 

Data Collection And Processing 

The A356 block and granite rock were heated with a 
hot air gun until they reached a temperature of approxi- 
mately 45’C. The samples were held at this temperature 
for the duration of the data collection. For these experi- 
ments, the spectral resolution of the interferometer was 
set to 8 cm“ . (Note that frequency is measured in wave- 
numbers with units of reciprocal centimeters, i.e., the 
number of wavelengths contained in one centimeter.) In 
all, 711 frames of 128x128 images were produced for 
each scan. As a point of terminology, the sequence of 
images produced by a scan is referred to as a raw data 
cubeihIhe interferogram associated with pixel (m. n) in 
the 1 raw data cube is denoted as zj(m, n, z) where z 
isthetimeindexO<zI711. 

In order to increase the signal-to-noise ratio of spec- 
tral features, an ensemble of 16 raw data cubes were col- 
lected from each sample. These cubes were averaged 
into a single data cube: 

x(m, n, z) = (si(m, n, z))i 

In addition to data from the A356 block and granite 
rock, calibration data was collected from a black body 
source. The source was set to T, = 55°C for a hot 
reference, and T, = 40°C for a cold reference. For 
each sample, 16 raw data cubes were collected of the hot 
and cold references. These data cubes were averaged in 
the manner previously indicated. As a result of the aver- 
aging, three data cubes were produced for each experi- 
ment: a sample data cube x(m, n, T) , a hot black body 
data cube h(m, 12,~) , and a cold black body data cube 
c(m, n, 2). 

An exemplar interferogram from the A356 experi- 
ment is shown in Figure 1. This interferogram is from 
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Figure 1: lnterferogram from pixel (64,64) of 
the A356 sample. The centerburst is located 
between samples 200 and 600. 

pixel (6464) of the sample. Note that the interferogram 
appears as a modulated sinusoid. The region between 
the 200th and 600th sample is called the centerburst of 
the interferogram. An image associated with the center- 
burst portion of a data cube, say for example 
x( ,. ., 400)) appears as a pattern of concentric interfer- 
ence rings. Interferograms often exhibit low amplitude 
signals on either side of, and perhaps within, the center- 
burst. These signals are a result of channel echo, a 
reflection of energy back into the interferometer from 
the focal plane array. The interferogram illustrated in 
Figure 1 does not exhibit channel echo effects due to the 
coarse spectral resolution used in these experiments. 
Interferograms, while illuminating some signal structure 
in a data cube, are difficult to interpret. However, the 
spectral information contained in interferograms can be 
quite revealing. 

The spectral content of a data cube is found by Fou- 
rier transforming each interferogram in the data cube. 
Typically, a data-tapering window w(r) is applied to 
each interferogram to reduce channel echo. To improve 
computational efficiency, the interferograms are often 
zero padded to an appropriate length. The magnitude of 
the resulting spectral data cube is given by 

XL ., k) = IFW(zM., ~>Z)~l 

where .U is the zero-padded interferogram. In these 
experiments, a data-tapering window was not applied 
due to the apparent lack of channel echo. Each interfero- 
gram was zero padded from 711 samples to 
1024 samples. Similar processing yields H( . , . , k) and 
C( , , k) , the hot and cold black body reference data 
cubes. Finally, the out-of-band portions of the spectra 
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Figure 2: Spectrum plot of the A356 sample in nor- Figure 3: Spectrum plot of the granite sample in 
malized units. From the top, the spectra are from normalized units. Solid line: pixel (48,52); Dotted 
pixels (84,22), c/8,34), (69,65), and  (26,22). line: pixel (91,37); Dashed line: pixel (87,75). 

were discarded. On ly 100  samples in the band 700  cm-’ 
to 1310 cm-’ were kept. 

After the spectral data has been averaged windowed, 
zero-padded and  fourier transformed, sample data is cal- 
ibrated using the hot and  cold references. Calibration is 
performed using the following expression 

X(m, n, k) = %(m, n, k) - C(m. n, k) 
H(m, n, k) - C(m. n. k) 

where the units are arbitrary. To  convert the calibrated 
data cube into spectral radiance, the following relation- 
ship is used: 

S(m, n, k) = X(m, n. k)AB(k) + B(k, T) 
where B(k, T) is the Planck spectral radiance function 
[31, c41 

and  

B(k, T) = hf$;3 
e  -1 

A&k) = B(k, T,) - B(k, Tc) 
In the Plank spectral radiance equation, k is the wave- 
number  of the radiation, in units of cm“, T  is the tem- 
perature of the cold black body in degrees Kelvin, h  is 
Plank’s constant, c is the speed of light, and  K is Boltz- 
mann’s constant. 

Data Analysis 

Spectra in a  calibrated data cube can reveal a  great 
deal of information about the object under  study. In a  
very pure sample, it m ight be  possible to identify the 
material by comparing its spectrum to the spectra in a  
materials library. Libraries of material spectra are avail- 

able on  the world wide web at various locations (see for 
example @ I). As examples, F igures 2  and  3  illustrate 
several spectra t?om the A356 and  granite samples. The  
A356 spectra in F igure 3  are from pixels within a  
1.9 m m  by 1.4 m m  area. They have a  very flat response 
over the 800  cm-’ to 1300 cm-l spectral band. Inspection 
of the A356 sample reveals a  homogeneous surface, one  
that tends to support the flat response seen in F igure 2. 
Moreover,  spectra for sheet aluminum have a  similar flat 
response in this band [S]. Observe the negative spectrum 
values in F igure 2. These values are a  result of calibrat- 
ing the data cube with a  cold black body source that is 
warmer than the sample. 

In contrast, spectra from the granite sample reveal a  
great deal of structure. The  spectra in F igure 3  were col- 
lected from an  area of 1.4 m m  by 1.25 m m . As seen in 
the figure, the spectrum from pixel (48,52) has a  large 
response centered around 930  cm-‘. The  spectrum of 
one  type of granite has a  similar response in this same 
spectral band [8]. The  spectrum associated with pixel 
(91, 37) has two smaller peaks centered around 
1020 cm“ and 1080 cm“. The  type of m ineral associ- 
ated with this spectrum has not been identified. The  
remaining spectrum exhibits little structure across the 
band. 

In many cases the spectrum associated with one  pixel 
in a  calibrated data cube is a  complex m ixture of many 
different material spectra. It is therefore highly desirable 
to transform me  spectra into a  form that is more readily 
analyzed. One  approach that is well suited for analyzing 
such random data is the Karhunen-Loeve Transforma- 
tion (KLT), also known as the method of principle com- 
ponents 191, UOI, W I. 



Figure 4: Plot of the spread of eigenvalues 
in the granite aample. 

To apply this technique to the analysis of a calibrated 
data cube, we model rhe spectra in the data cube as an 
ensemble of random vectors. The ensemble is formed by 
mappmg the data X(m. n. k) into the matrix 
.W,@ 

c$e 
where the k sptitral image is mapped into 

the k row of X. Eenote the number of rows in X as 
nk. and the number of columns as rlP. .4s the KLT 
relies upon second order statistics of the data, it is neces- 
sary to estimate the covariance matrix of the spectra. 
Begin by removing the bias on each row in X by sub- 
tracting the average value of the row from each element 
in the row: 

X(k. .) = X(k. + (X(k. .)) 

The covariance matrix is then estimated as 

c = BXT 
where the resulting covariance matrix has dimensions 
nk x nfi. Next, the eigenvalues Z%, and associated eigen- 
vectors I&, 1 <is r+, of the covariance matrix are 
computed. The eigenvalues are ordered from the largest 
ro smallest, 

h,~h,>h,L~hni 

and their associated eigenvectors arranged into an eigen- 
vector maaix Q 

4 member of the specual ensemble, say x , can be rep- 
resented as a weighted sum of the eigenvectors 
x = @y , where y is a vectohof weights. Conversely, in 
the inverse relation y = @ x, where the superscript 
~presents the Hermitian uanspose. y is the KLT of + 

As a result of the basis restriction properties of the 
KLT, the hrst few eigenvectors represent the most 
important features in the dxa [lo]. It is instructive to 
examine the. ordered eigenvalue sequence. A plot of the 

Figure 5: Eigenimage of the granite sample. 
This eigenimage covers a 4 mm by 4 mm 
region on the rock 

eigenvalues of the granite sample is shown in Figure 4. 
As illustrated in the figure, the magnitude of the eigen- 
vaIues decrees rapidly over the first twenty or so 
modes. These m&es comprise tbe main srmctore of the 
data. If the data were reconsuocted from these modes, 
the residual error :-inuld be minimal. From approxi- 
mately the hventieth fifth fo the ninety-fourth eigen- 
value. the decrease is more gentle and the eigenvalues 
have a small magnitude. These modes are associated 
system noise and anifacts, and are not important io the 
material analysis. The remaining eigenvalues belong to 
degenerate modes. They are produced by the zero pad- 
ding applied to rhe intetierograms before Fourier trans- 
formation, and ax not useful in the analysis [5]. 

the 
The spatial structure of a data cube decomposed wi,tt 
KLT is revealed in a series of eigenimages. The i 

eigenimage is the projection of the spectra in the data 
cube onto eigenvector $i. .4n example eigenimage from 
the granite rock is shown in Figure 5. This eigenimage 
covers 3% approximately 4 mm by 4 mm area of the 
rock. and exhibits the complex spatial structure charac- 
teristic of granite. The various regions in the image COT- 
respond to the constituent components of manite, 
namely, quartz. feldspar and mica. The mineral rdentity 
of the various regions in the eigenimage has not been 
established at this time, but is under study. Note that 
there are several black and white single-pixel featwes in 
the image. These features are bad pu;els in the focal 
plane array, and are not of concern in the analysis. 

Summary 

This investigation assessed the use of HIRE in the 
nondesmxtive evaluation of man-made and natural 
objects. Hyperspectral infrared data was collected on 



two objects, a block of aluminum alloy and a specimen 
of granite rock, after a slight modification of the HWS 
input optics. Several data sets were collected on the 
specimens and calibration sources. The data sets were 
averaged to increase the signal-to-noise ratio, processed 
and Fourier transformed to produce data cubes of cali- 
brated spectral data. Preliminary analysis of the spectral 
data using KLT techniques reveals interesting structure 
in the data, but additional study is required to fully 
assess the potential of this technology. 
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